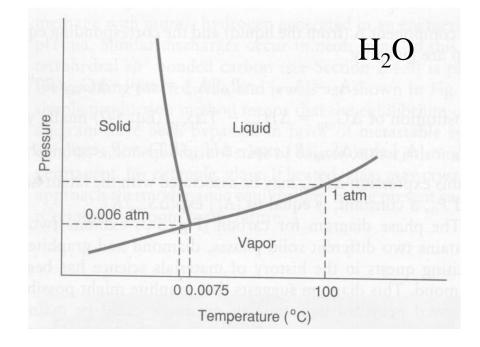
Equilibrium Phase Diagrams

A brief introduction of phase diagrams

Basic definitions


- **System:** specific body of materials under consideration, isolated from the rest of the universe for observation, has a boundary
- Phase : any portion of the system (including the whole of the system) that is chemically and physically homogeneous within itself, mechanically separable from the rest of system
- Components : smallest number of independently variable chemical constituents, necessary to describe the chemical composition of each phase in the system, e.g. Zn, Au, H₂O, Al₂O₃


Basic definitions

- Equilibrium: at equilibrium there is a balance between opposing forces acting on the system, system is at its lowest free energy state, at equilibrium the properties of a system do not change with time, the system is stable
- Metastable : reaching *equilibrium* state may take a long time, then the system can exist in a *metastable* state for a very long time.
- **Phase diagram** : a graphic display of phase structure (microstructural) information. Single component phase diagrams are the simplest:

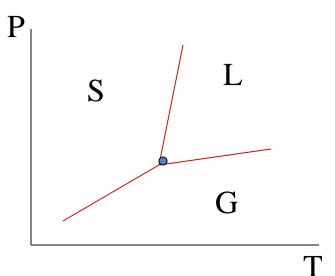
Single-component systems

- H₂O system : waterice-vapor; phase of water
- Carbon phase diagram

• Temperature and pressure are the independent variables

GIBBS Phase Rule

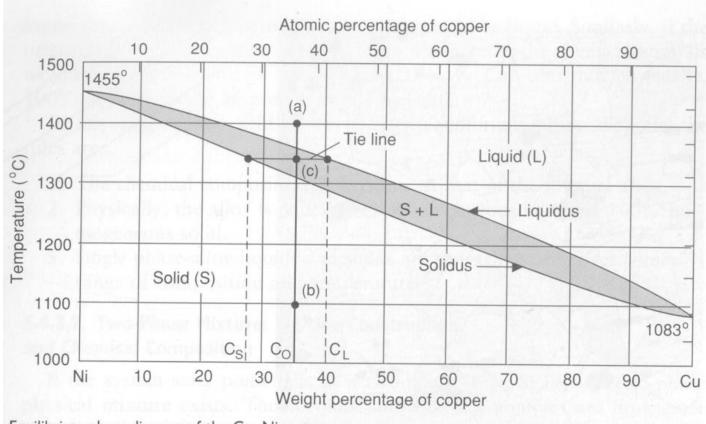
P + F = C + 2


- Degrees of Freedom, F : number of independent variable available to the system
- P, number of Phases
- C, number of components
- Historically, temperature and pressure were the variables available to the system

GIBBS Phase Rule

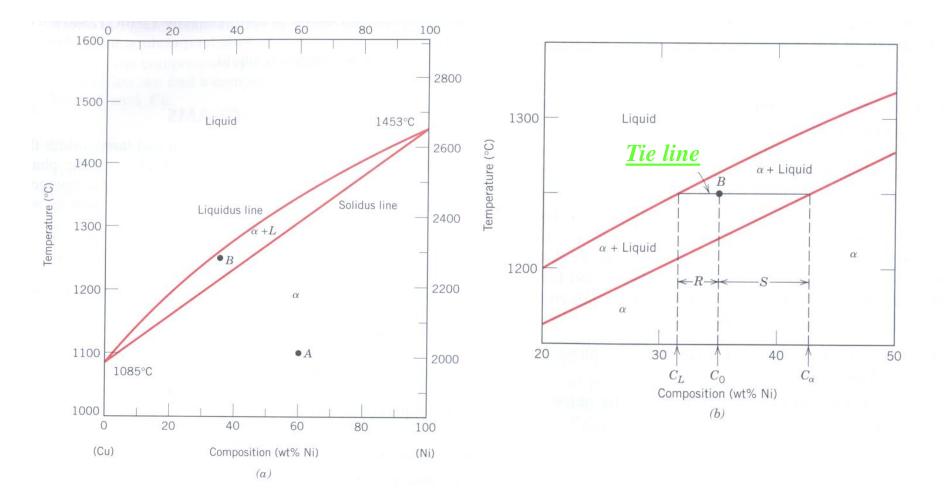
- In a single-component system
 - F + P = 1 + 2 =>

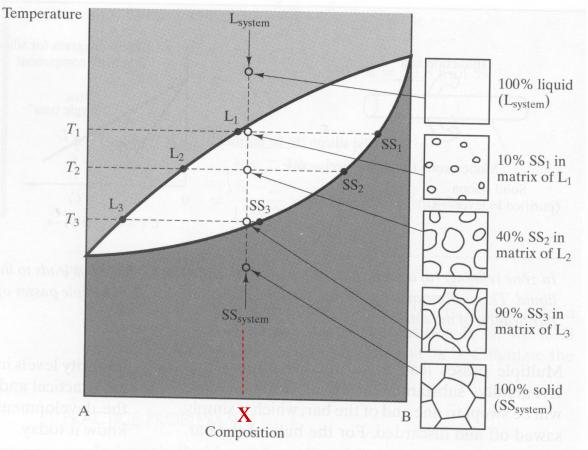
We have

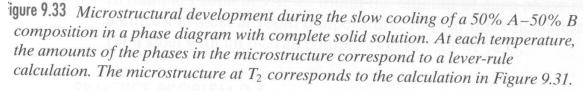

- Di-variant fields
- Mono-variant lines
- Invariant point

F = number of variables you can change independently without altering the phase composition of the system

Two-components phase diagrams

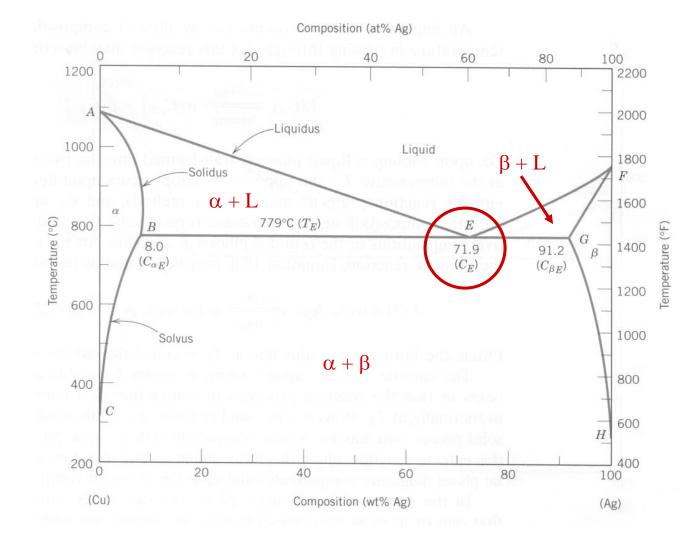

 Binary phase diagrams with complete solid solubility


Equilibrium phase diagram of the Cu-Ni system.


- Complete substitutional solid solubility between Cu and Ni
- Cu and Ni both form FCC, have similar atomic radii, similar electro negativity and valences
- Above Liquidus Line @ all T and compositions only liquid present
- Below Solidus Line @ all T and compositions only solid phase present
- Between solidus and liquidus lines two phase region: solid phase and liquid

Finding the compositions of the phases in the two phase region: Tie-Line construction

Development of the microstructure: (complete solubility) Under equilibrium conditions



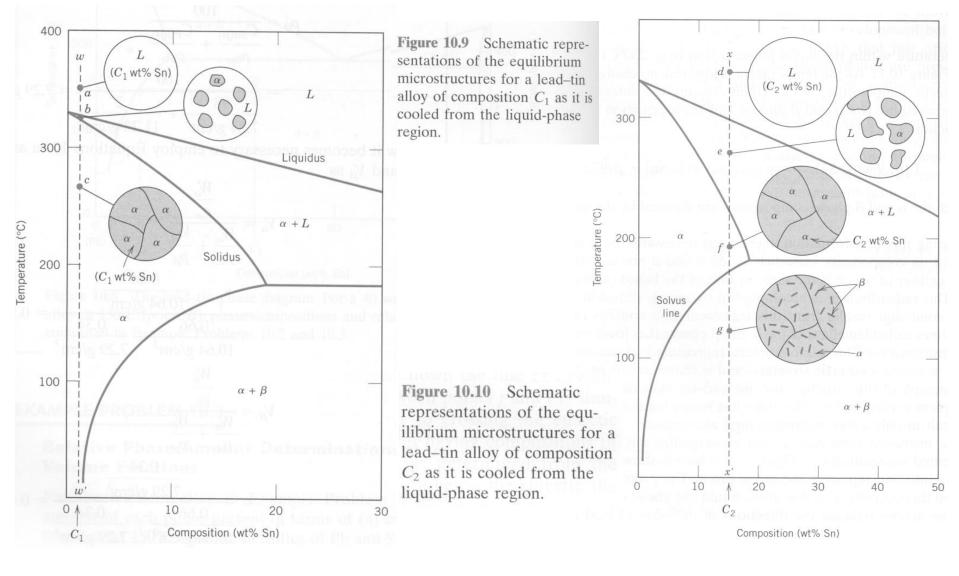
As a homogeneous liquid with the composition x cools, the contents of a crucible goes through structural changes as one crosses phase boundary lines.

In two phase regions, tie line indicates the compositions of the phases, and the lever rule can be used to find the amounts of phases in the crucible.

At the end of the equilibrium (slow) cooling crucible will contain a homogeneous solid Solution of composition x.

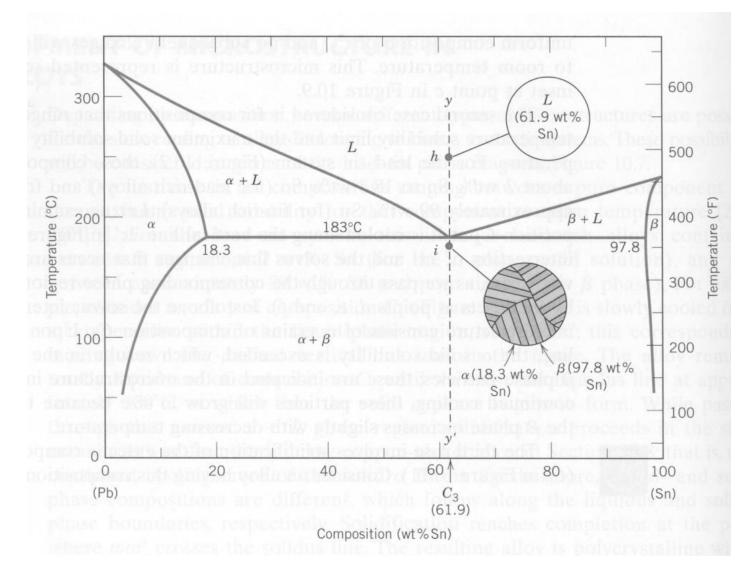
Binary Eutectic Systems: limited solubility (Under equilibrium conditions)

•Three two-phase regions •Two solid solutions with limited solubility •A Composition that melts at a lower temperature (Eutectic temp.) than both pure phases, eutectic point, E

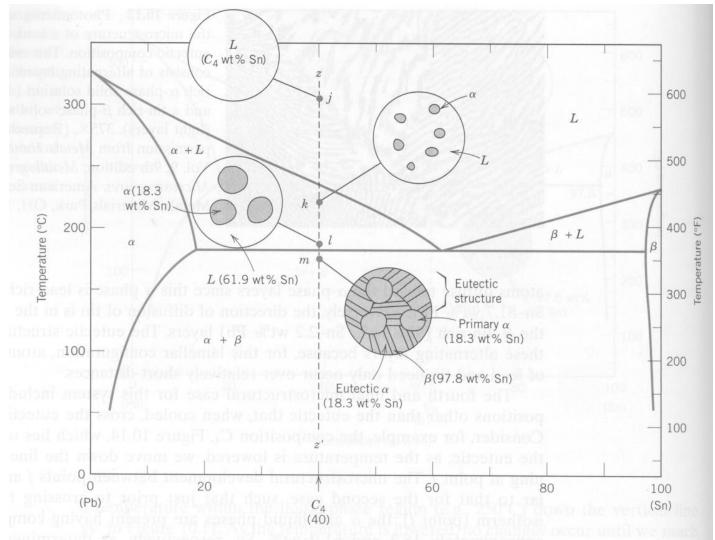

Binary Eutectic Systems: limited solubility (Under equilibrium conditions)

@ Eutectic point:

 $L_E \rightarrow \alpha_E + \beta_E$ @ eutectic temperature T_E


- •In a eutectic binary phase diagram, three phases can be in equilibrium, at points along the eutectic isotherm.
- •Single phase regions are always separated from each other by a two phase region consisting of two single phases that border the two phase region
- •The eutectic point, E is the invariant point in the system

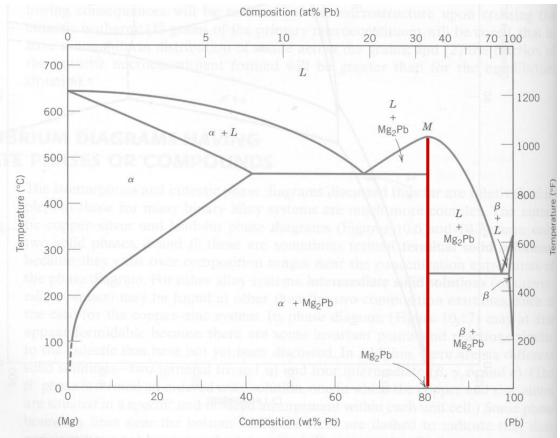
Development of the microstructure: Eutectic system



Development of the microstructure: Eutectic system

eutectic reaction and eutectic microstructure

Development of the microstructure: Eutectic system

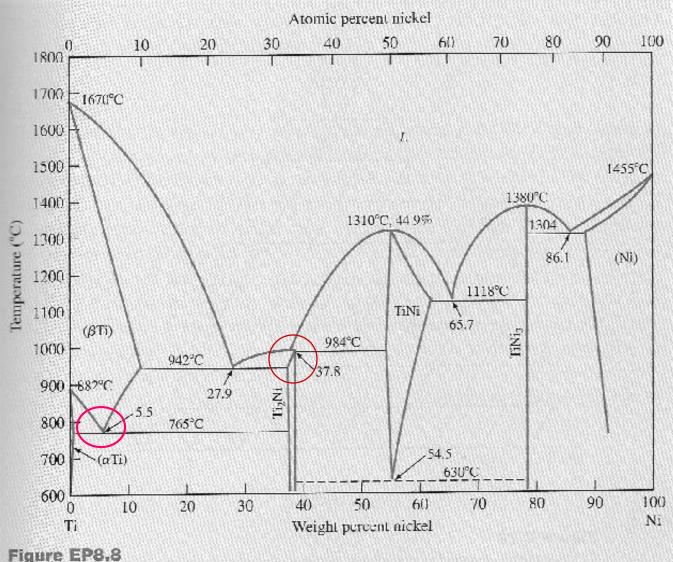


Composition (wt% Sn)

Figure 10.14 Schematic representations of the equilibrium microstructures for a lead-tin alloy of composition C_4 as it is cooled from the liquid-phase region.

Binary phase diagrams with intermediate compounds

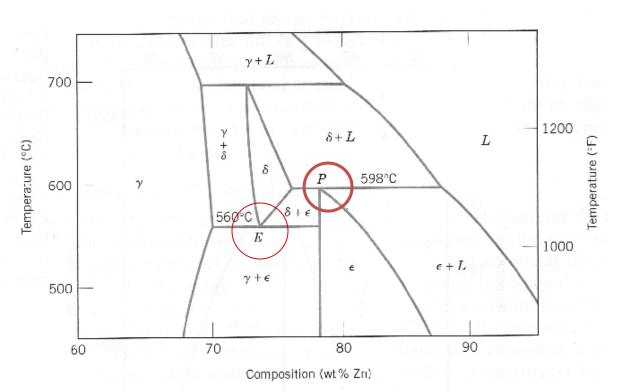
Simplest case a congruently melting binary compound



•A congruently melting compound divides a simple eutectic into two simple eutectics.

•The compounds melts directly into a liquid with the same composition

Figure 10.18 The magnesium-lead phase diagram. (Adapted from *Phase Diagrams of Binary Magnesium Alloys*, A. A. Nayeb-Hashemi and J. B. Clark, Editors, 1988. Reprinted by permission of ASM International, Materials Park, OH.)


In real life they may look more like this or a bit colorful (-:

Even this one is not too bad. There are two new types of reactions: Eutectoid and Peritectic reactions; besides there are intermediate compounds that have solubilities on both sides; e.g. **TiNi**

Titanium-nickel phase diagram. (After Binury Alloy Phase Diagrams, ASM Int., 1986, p. 1768.)

Eutectoid and Peritectic reactions:

Eutectoid rxn

Peritectic rxn

 $\delta + L \overleftarrow{\leftarrow} \overrightarrow{} \in$

Figure 10.19 A region of the copper-zinc phase diagram that has been enlarged to show eutectoid and peritectic invariant points, labeled E (560°C, 74 wt% Zn) and P (598°C, 78.6 wt% Zn), respectively. (Adapted from *Binary Alloy Phase Diagrams*, 2nd edition, Vol. 2, T. B. Massalski, Editor-in-Chief, 1990. Reprinted by permission of ASM International, Materials Park, OH.)

MME-2506 Refractory Materials

Refractories are <u>heat resistant materials</u> used in almost all processes involving <u>high temperatures</u> and/or <u>corrosive environment</u>. These are typically used to <u>insulate</u> and <u>protect</u> industrial furnaces and vessels due to their excellent <u>resistance to heat</u>, <u>chemical attack</u> and <u>mechanical damage</u>.

Heat resistant, heat insulation, high T, resistance to chemical attack, resistant to mechanical damage (compressive) \rightarrow Ceramics

Ceramics are in the form of minerals in nature. They are mined and beneficiated. There are also ceramics that has to be synthesized. Since ceramic production starts from powders, final properties of ceramics are affected strongly by powder properties.

First look at raw materials as ceramic source.

Raw Materials

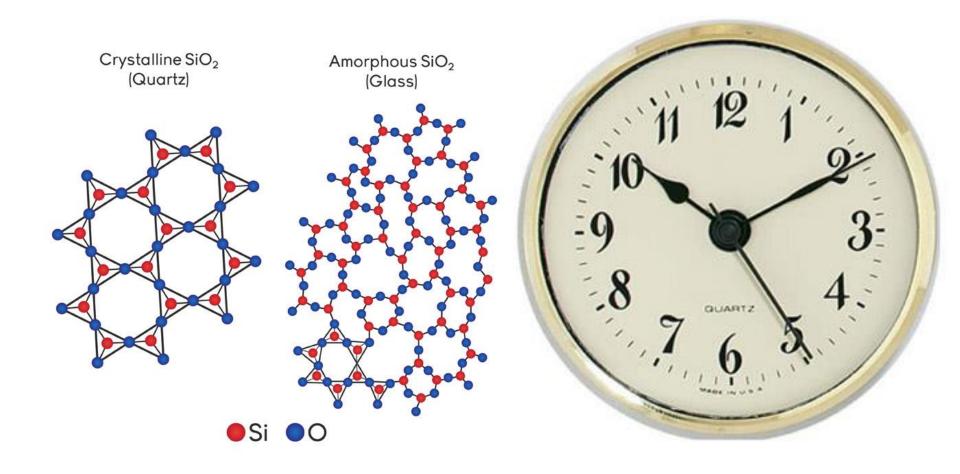
From the earth's crust \rightarrow minerals containing Mg,Fe,Al,Ca,SiO₂ mined and beneficiated

Physical beneficiation \rightarrow crushing, grinding Chemical beneficiation \rightarrow dissolution in a proper solvent and filtration

Silica

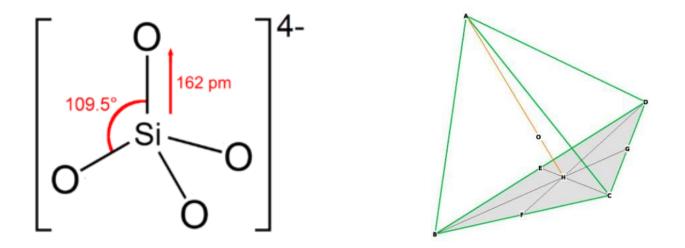
Silica is an important raw material for ceramis. Mainly used in cement and glass industry.

There are also lots of production method and application area of Silica, such as; Fumed Silica (colloidal silica from SiCl₄)


Silica Fume (nanosized and amorphous silica as by product of Si and ferrosilicon alloys)

Silica in microelectronics (thermal oxidation on Si layers) Silica Gel (acidification of sodium silicate)

Silica


Major Silica source for glass industry is silica sand, quartz.

Quartz is the general name of the crystal SiO_2 , and also RT crystal structure name of SiO_2 . (The other polymorph names are tridymite and cristobalite)

Silicates

Silicates that we will examine are Feldspar, kaolin, mica and mullite. They all have tetrahedrons of Si at the center and oxygens at the corners.

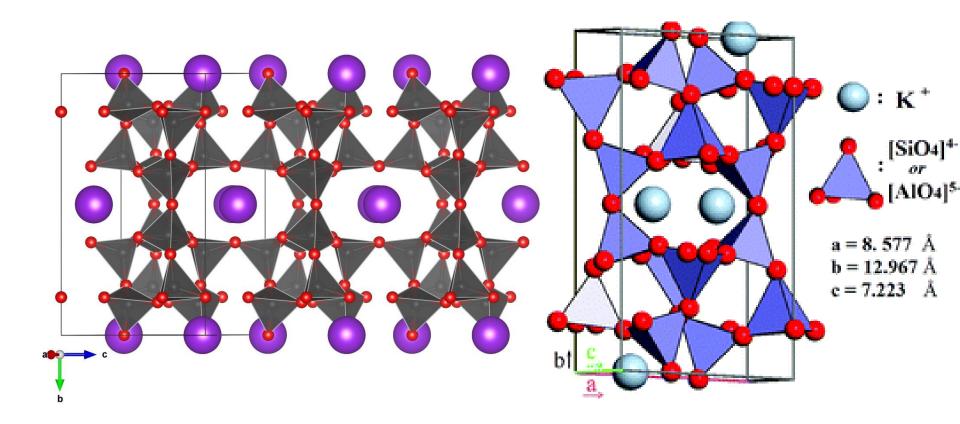
These tetrahedra sometimes occur as isolated SiO_4^{4-} centres, but most commonly, the tetrahedra are joined together in various ways, such as pairs ($Si_2O_7^{6-}$) and rings ($Si_6O_{18}^{12-}$). Commonly the silicate anions are chains, double chains, sheets, and three-dimensional frameworks.

TABLE 2.2					
Major Silicate Structures					
GEOMETRY OF LINKAGE OF SiO4 TETRAHEDRA		EXAMPLE MINERAL	CHEMICAL COMPOSITION		
Isolated tetrahedra: No sharing of oxygens between tetrahedra; individual tetrahedra linked to each other by bonding to cation between them		Olivine	Magnesium-iron silicate		
Rings of tetrahedra: Joined by shared oxygens in three-, four-, or six- membered rings		Cordierite	Magnesium-iron- aluminum silicate		
Single chains: Each tetrahedron linked to two others by shared oxygens; chains bonded by cations		Pyroxene	Magnesium-iron silicate		
<i>Double chains:</i> Two parallel chains joined by shared oxygens between every other pair of tetrahedra; the other pairs of tetrahedra bond to cations that lie between the chains		Amphibole	Calcium-magnesium- iron silicate		
Sheets: Each tetrahedron linked to three		Kaolinite	Aluminum silicate		
others by shared oxygens; sheets bonded by cations		Mica (muscovite)	Potassium- aluminum silicate		
Frameworks: Each tetrahedron shares all its oxygens with other SiO ₄ tetrahedra		Feldspar (orthoclase)	Potassium- aluminum silicate		
(in quartz) or AlO ₄ tetrahedra	\mathbf{v} \mathbf{v}	Quartz	Silicon dioxide		

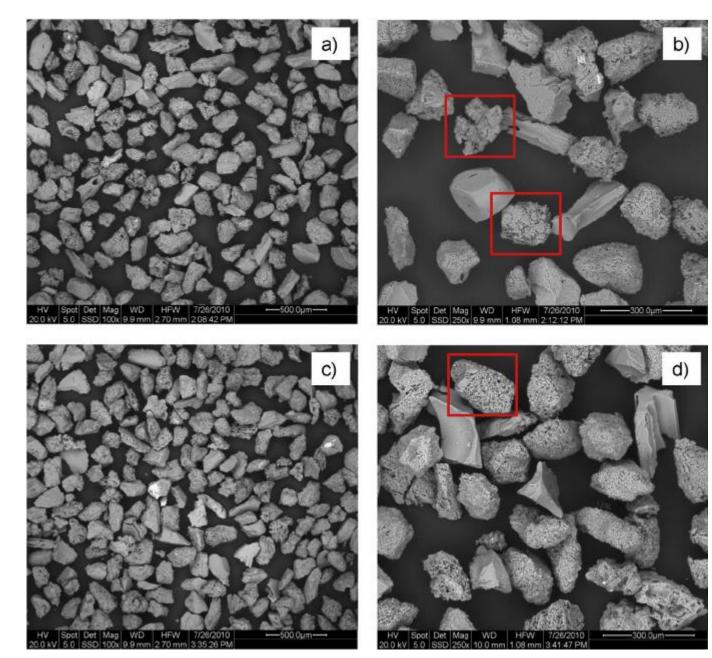
Feldspar

Aluminium silicate of potassium, sodium, calcium, and/or lithium. Feldspars are important ingredients in clay bodies and glazes. In both applications, their primary function is to supply fluxes to the formulations, but they also provide additional alumina (Al_2O_3) and silica (SiO₂).

Feldspars are naturally occurring minerals and are generally classified as either potash (potassium) or soda (sodium) feldspars based upon the predominant alkali metal element (<u>the flux</u>) that is present. Present in volcanic and metamorphic rocks.

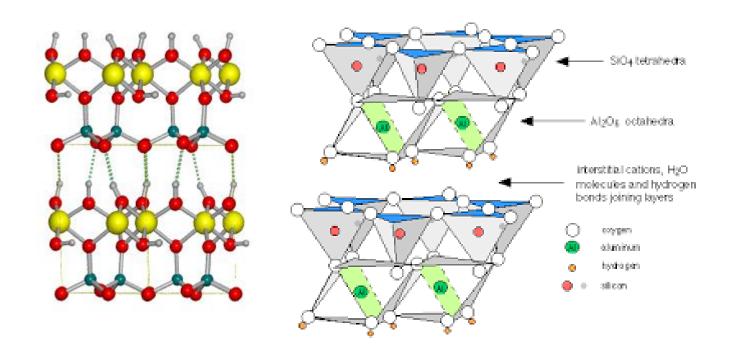

Potash feldspars K₂O•Al₂O₃•6SiO₂

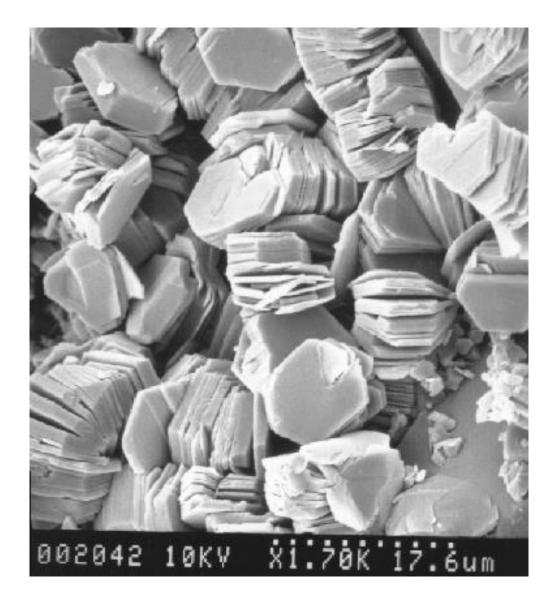
Soda feldspars Na₂O•Al₂O₃•6SiO₂


A **ceramic flux** functions by promoting partial liquification in clay bodies and glazes. Fluxes are used in glazes to lower the high melting point of the glass formers like silica Feldspar

Potash feldspars K₂O•Al₂O₃•6SiO₂

Soda feldspars Na₂O•Al₂O₃•6SiO₂


Feldspar


Kaolin

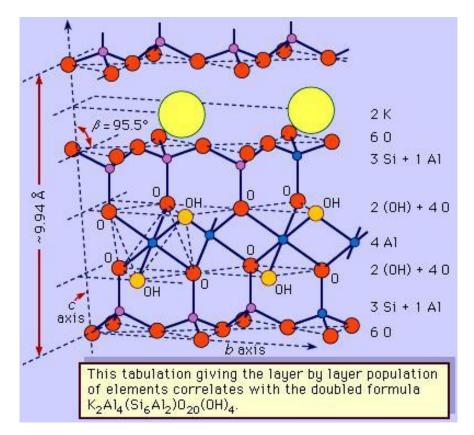
Kaolin is a clay mineral. Clay minerals are layered silicates. Rocks that are rich in kaolinite are called as Kaolin or China Clay

Kaolinite: $Al_2Si_2O_5(OH)_4$ (Si_2O_5 and $Al_2(OH)_4$)

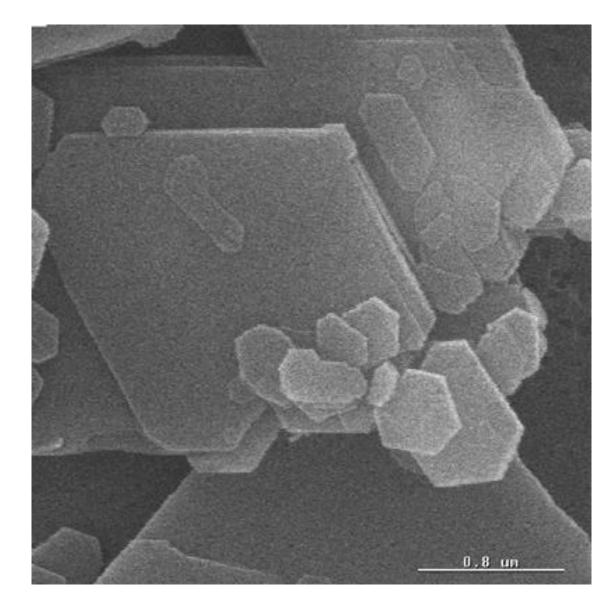
Kaolin

hydrogen 1	18778		2		10	2)		15		053	W			1818	0.52	190	1992	helium 2
H 1.0079																		He
ithum 3	beryllum 4	I										ſ	boron 5	carbon 6	ntrogen 7	oxygen 8	Buorine 9	ncon 10
Li	Be	I)	B	Ċ	Ň	Ó	F	Ne
6,941	9.0122	i										, j	10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12	1										1	aluminium 13	sticon 14	phosphorus 15	suffor 16	chlorine 17	argon 18
Na	Mg	I.)	Â	Si	P	S	CI	Ar
22.990	24.305	1										/	26.562	28.085	30.974	32.065	35.453	39.948
potassium 19	calcium 20	1	scondium 21	ttanium 22	vanadium 23	chromium 24	manganese 25	iton 26	cobalt 27	nicket 28	coppor 29	zine 30	gallom 31	germanium 32	arsenic 33	-selonum 34	tromine 35	krypton 36
ĸ	350.03	, J	Sc		Ň	Ĉr		Fe	Co	Ni		10000	Ga	22.22		Se	Br	Kr
n		, I	44,966	47.967	50.942	51.996	Mn	FC 55.845	58.903	58.693		Zn	69.723	Ge	AS	78.96	DI 79.904	83.80
rubidum	stronture	1	ytotum	zireontara	00004J/10	molybdenum	techneturn	ruthenium	mutoch	palladium	sher	codmium	indum	to	antmony	nuture	iodine	xenon
37	38	, I	39 V	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	, J	T	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468 caesium	87.62 Barium		88.906 Rutetium	91.224 hatnum	92.906 tantatura	95.94 Bungsten	[98] menura	101.07 05mbm	102.91 Indum	106.42 platnum	107.87 gold	112.41 mercury	114.82 Unations	118.71 Nod	121.76 bismuth	127.60 potonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
trancium 87	radium 88	89-102	tawrendum i 103	rutherfordium 104	dubnium 105	seaborgium 106	107	108	meitnerium 109	ununnitum 110	unununium 111	ununbium 112		114	1			
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt		Uuu			Uuq				
[223]	1226		12621	[261]	1262]	1266	12641	[263	[268]	12711	12728	1277	6. 1	12808	4			

*Lanthanide series	lanthanum 57	cerum 58	praseodymum 59	neodymium 60	promethium 61	samanium 62	europium 63	gadolnium 64	berbium 65	dysprosium 66	toinium 67	erbium 68	thutium 69	yttertaurs 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
* * Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	cunium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[2.47]	[247]	[251]	[252]	(257)	[258]	[259]


Mica

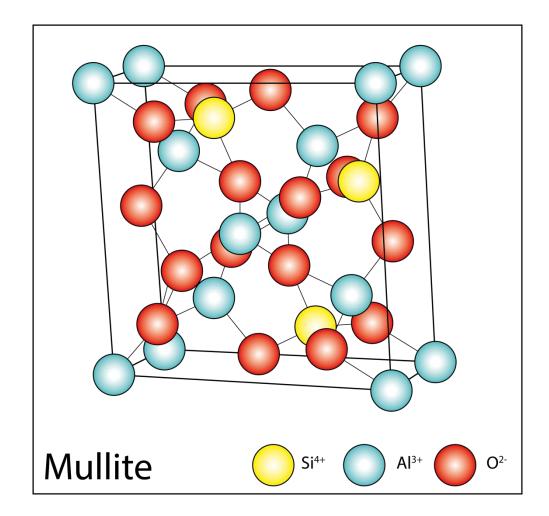
There are 2 classes of mica. True and Brittle. True micas contain univalent cations (Na⁺ or K⁺) btw each pair of layes. These layers are sparated under shear stress in cleavage/splitting manner.


 $KAl_2(Si_3Al)O_{10}(OH)_2$

In brittle micas, interlayer ions are divalent, like Ca²⁺

Because of 2+ charge, they are stronger than True micas. These micas are rare.

Mullite


Mullite has the formula of $3Al_2O_3 2SiO_2$ and exist in nature very rare. Mullite is suitable for high temperature applications. It is used in furnace lining, refractory applications in iron, steel and glass industries.

Can be produced;

- By sintering mixture of kyanite (Al₂OSiO₄), bauxite (Al(OH)₃) and kaolin. Sintered at around 1600^oC with correct proportions. Sintered product contains around 60-70% mullite. Rest will be silica based by products.
- By fusing in an electric arc furnace at about 1750°C of alumina and kaolin. This method gives higher purity mullite (>95%)

It has a high melting point, around 1840^oC

Mullite

Alumina, Al_2O_3

Alumina is known as corundum, which is the name of its crystal structure. It is produced mainly from Bauxite $(Al(OH)_3)$ mineral by Bayer process. Bauxite has some impurities of iron, titanium and silicon oxide impurities in it.

A purity of 95% alumina, with main impurity of Na_2O , can be obtained by Bayer process.

1- Groung bauxite is treated with NaOH solution at $\sim 150^{\circ}$ C. The impurities in bauxite do not dissolve.

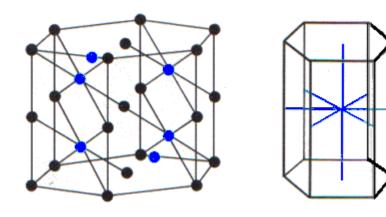
 $Al(OH)_3(s)+NaOH(aq)=Na^+(aq)+Al(OH)_4^-(aq)$

2- By filtration, we get rid of impurities. To the filtered solution, gibbsite crystals are added as seeds for the ppt of Al-hydrate from the solution.

Alumina, Al_2O_3

3- The ppts are separated from the solution by filtration. Then washed to get rid of residual sodium.

4- Calcination of aluminium hydroxite at around 1100^oC-1200^oC.


 $2Al(0H)_{3(s)} = Al_2O_3(s) + H_2O(g)$

5- 5-10 μ m crystals produced. Further milling is done to decrease particle size. Purity is >99.5%, main impurity is Na₂O

Alumina, Al₂O₃

Its crystal structure is corundum, in an hexagonal lattice.

Alumina has melting temperature of 2072^oC.

Magnesium Oxide, MgO

It is found in the form of periclase mineral. But, it is not used as MgO source, because it is rare in nature.

MgO sources are mainly magnesium hydroxide (Mg(OH)) or magnesite (MgCO₃, magnesium carbonate). Impurities in magnesite mineral are quartz, talc (Mg₃Si₄O₁₀(OH)₂), mica, and magnetite (Fe₃O₄)

Beneficiation is applied to get rid of impurities include crushing, screening, washing, magnetic separation, froth flotation. After that;

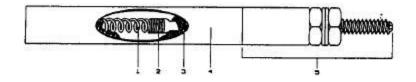
 $MgCO_3 = MgO + CO_2$ calcination @ $800^{\circ}C-900^{\circ}C$

MgO is also produced from seawater. 1,3 gr MgO is present in 1 kg seawater.

Most of MgO is used as refractory linings in furnaces.

Magnesium Oxide, MgO

MgO has Rock Salt Structure

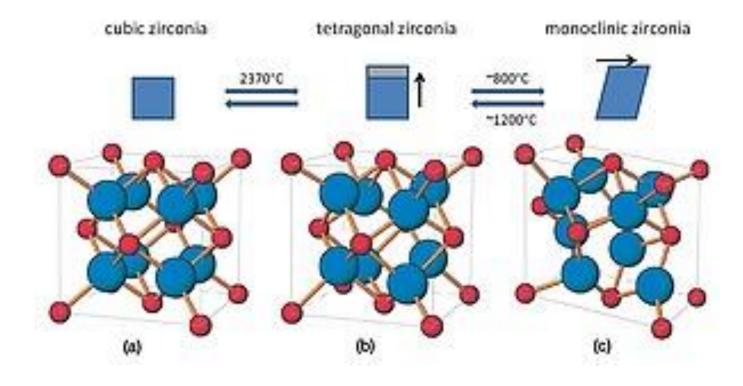


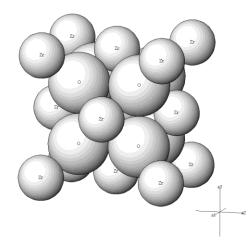
Magnesium Oxide, MgO

TUBULAR ELEMENTS

- Where: 1 Element Coil
 - 2 Element Cold Junction
 - 3 Magnesium Oxide (MgO)
 - 4 Element Sheath
 - 5 Element Terminal Post

Source of ZrO_2 is Zircon ($ZrSiO_4$), present in volcanic rocks.

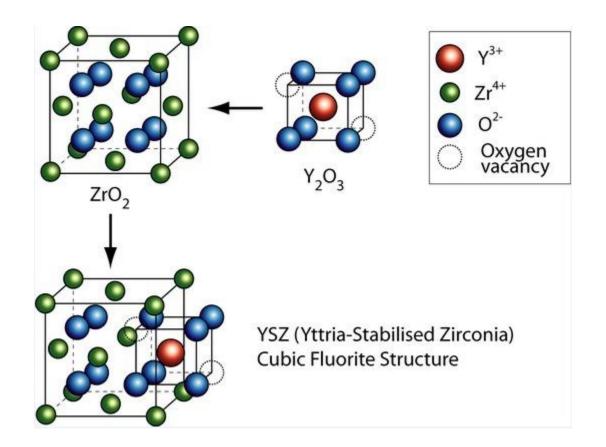

Secondary source is beach-sands. Mainly in Australia and Brazil. In Turkey, Şile beach has also Zircon concentration around 3%.


One way of Zirconia production is dissociating zircon above 1750°C with the help of plasma.

 $ZrSiO_4 = ZrO_2 + SiO_2$

During cooling, zirconia solidifies first. Later, silica solidifies and covers zirconia crystals. At high cooling rates, silica forms glass. This can be separated from zirconia by dissolving it in hot NaOH.

Another method is direct melting of zircon in electric arc furnace at 2300°C. At this T Silica melts and it can be separated from solid state zirconia.

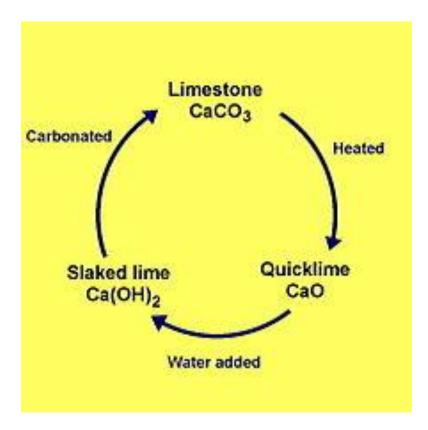


Pure zirconium dioxide undergoes a phase transformation from monoclinic (stable at the room temperature) to tetragonal (at about 1173 °C) and then to cubic (at about 2370 °C)

Pure zirconium dioxide undergoes a phase transformation from monoclinic (stable at the room temperature) to tetragonal (at about 1173 °C) and then to cubic (at about 2370 °C)

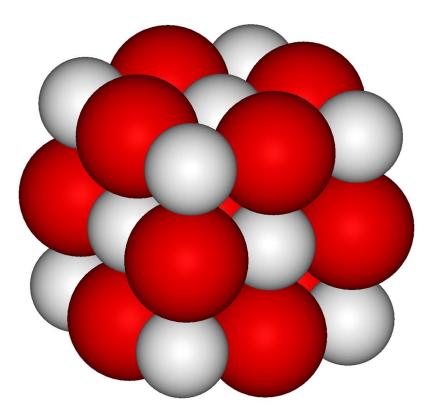
monoclinic (1173 °C) \leftrightarrow tetragonal (2370 °C) \leftrightarrow cubic (2690 °C) \leftrightarrow melt

Stable sintered zirconia ceramic products is difficult because of the large volume change from tetragonal to monoclinic (~ 9%). Stabilization of the cubic polymorph of zirconia over wider range of temperatures is accomplished by substitution of some of the Zr⁴⁺ ions (ionic radius of 0.82 Å, too small for ideal lattice of fluorite characteristic for the tetragonal zirconia) in the crystal lattice with slightly larger ions, e.g., those of Y³⁺ (ionic radius of 0.96 Å). The resulting doped zirconia materials are termed *stabilized zirconia*



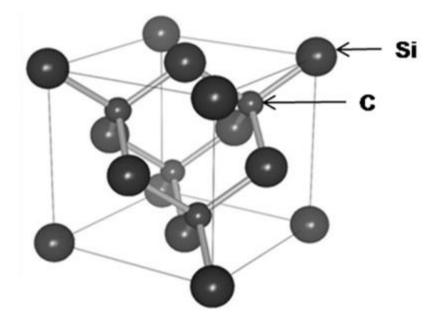
Stabilization with yttria, forms oxygen vacancy, which brings oxygen ion conductivity to material.

Calcium Oxide, CaO


CaO – Calcium Oxide Ca(OH)₂ – Calcium Hydroxide CaCO₃ – Calcium Carbonate

- Lime, Quicklime
- Lime, Slaked lime
- Calcite, Limestone

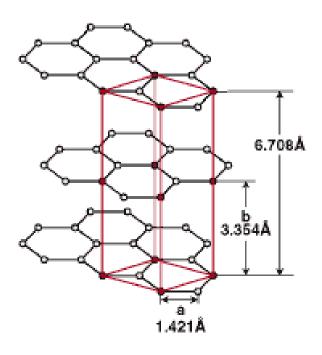
Calcium Oxide, CaO

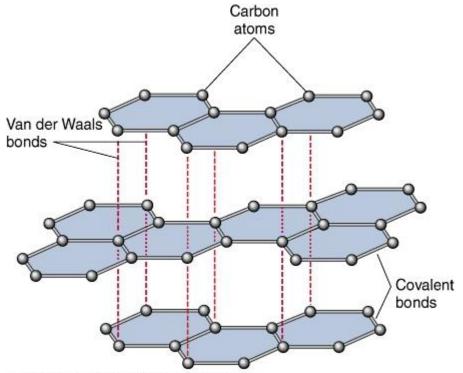

Rock Salt Structure, similar to MgO

SiC

Silicon Carbide, one of the non-oxide ceramics.

- One of the hardest material (after diamond)
- Possess very high thermal conductivity
- High electrical conductivity
- Crystal structure is : Diamond Cubic




Graphite

One of the crystalline forms of carbon.

Graphite has very high melting point (~4000^oC), but it burns out at 600^oC in O₂ atm.

- Extremely soft material because of the sheet-structure and van der Waals bonding btw sheets.
- Extremely high thermal conductivity in a-axis
- Very low thermal conductivity in c-axis
- High electrical conductivity in a-axis. Graphite electrodes used in arc furnaces. Natural graphites are used as refractor
- Crystal structure is hexagonal

Copyright 1998 by John Wiley and Sons, Inc. All rights reserved.